Multifractal Analysis of Infinite Products of Stationary Jump Processes

نویسندگان

  • Petteri Mannersalo
  • Ilkka Norros
  • Rudolf H. Riedi
  • Tomasz J. Kozubowski
چکیده

There has been a growing interest in constructing stationary measures with known multifractal properties. In an earlier paper, the authors introduced the multifractal products of stochastic processes MPSP and provided basic properties concerning convergence, nondegeneracy, and scaling of moments. This paper considers a subclass of MPSP which is determined by jump processes with i.i.d. exponentially distributed interjump times. Particularly, the information dimension and a multifractal spectrum of the MPSP are computed. As a side result it is shown that the random partitions imprinted naturally by a family of Poisson point processes are sufficient to determine the spectrum in this case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifractal Analysis of a Class of Additive Processes with Correlated Non-Stationary Increments

We consider a family of stochastic processes built from infinite sums of independent positive random functions on R+. Each of these functions increases linearly between two consecutive negative jumps, with the jump points following a Poisson point process on R+. The motivation for studying these processes stems from the fact that they constitute simplified models for TCP traffic on the Internet...

متن کامل

Limit Theorems for Multifractal Products of Geometric Stationary Processes

Abstract: We investigate the properties of multifractal products of geometric Gaussian processes with possible long-range dependence and geometric Ornstein-Uhlenbeck processes driven by Lévy motion and their finite and infinite superpositions. We present the general conditions for the Lq convergence of cumulative processes to the limiting processes and investigate their q-th order moments and R...

متن کامل

Multifractal products of stochastic processes: construction and some basic properties

In various fields, such as teletraffic and economics, measured times series have been reported to adhere to multifractal scaling. Classical cascading measures possess multifractal scaling, but their increments form a non-stationary process. To overcome this problem we introduce a construction of random multifractal measures based on iterative multiplication of stationary stochastic processes, a...

متن کامل

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

Scale Invariant Infinitely Divisible Cascades

Multiplicative processes and multifractals proved useful in various applications ranging from hydrodynamic turbulence to computer network traffic. It was recently shown and explained how and why multifractal analysis could be fruitfully placed in the general framework of infinitely divisible cascades. The aim of this contribution is to design processes, called Infinitely Divisible Cascading (ID...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010